Audio with embedded Linux training On-site training, 2 days Latest update: May 08, 2024 | Title | Audio with embedded Linux training | |---------------------|--| | Training objectives | Be able to understand the basics of audio theory: analog vs. digital, sampling theory, audio formats and audio hardware Be able to understand the architecture of ASoC, the Linux kernel subsystem for audio devices used in embedded systems, the role of the different drivers and the Device Tree representation Be able to write a Device Tree describing the topology of audio hardware on an embedded Linux system Be able to use complex audio routing capabilities, audio power management capabilities, and complex audio components such as auxiliary devices or amplifiers Be able to configure the ALSA user-space components and ALSA audio widgets Be able to use the available user-space APIs for playing and capturing audio, as well as the PipeWire audio server and the GStreamer multimedia pipeline library | | Duration | Two days - 16 hours (8 hours per day) | | Pedagogics | Lectures delivered by the trainer: 75% of the duration Practical demonstrations done by the trainer: 25% of the duration Electronic copies of presentations, lab instructions and data files.
They are freely available at https://bootlin.com/doc/training/audio. | | Trainer | One of the engineers listed on: https://bootlin.com/training/trainers/ | | Language | Oral lectures: English, French.
Materials: English. | | Audience | Engineers who need a detailed level of understanding of audio concepts, audio hardware components used in typical embedded systems and how the audio stack works in Linux. | | Prerequisites | Knowledge and practice of UNIX or GNU/Linux commands: participants must be familiar with the Linux command line. Participants lacking experience on this topic should get trained by themselves, for example with our freely available on-line slides at bootlin.com/blog/command-line/. Minimal experience in embedded Linux development: participants should have a minimal understanding of the architecture of embedded Linux systems: role of the Linux kernel vs. user-space, development of Linux user-space applications in C. Following Bootlin's Embedded Linux course at bootlin.com/training/embedded-linux/ allows to fulfill this pre-requisite. Minimal English language level: B1, according to the Common European Framework of References for Languages, for our sessions in English. See bootlin.com/pub/training/cefr-grid.pdf for self-evaluation. | |--------------------|---| | Required equipment | For on-site sessions at our customer location, the customer must provide: • Video projector • Large monitor • Drawing board | | Certificate | Only the participants who have attended all training sessions, and who have scored over 50% of correct answers at the final evaluation will receive a training certificate from Bootlin. | | Disabilities | Participants with disabilities who have special needs are invited to contact us at <i>training@bootlin.com</i> to discuss adaptations to the training course. | ## Day 1 - Morning #### **Lecture - Digital Audio Representation** - What is sound? - Sampling theory - Sample size, sample rate - · Audio formats: I2S, LJ, RJ, DSPA, DSPB - AC97 - IEC 61937 (S/PDIF and HDMI) - PDM Introducing the basic notions used for representing audio waveforms. #### Lecture - Hardware - Signals - CPU Digital Audio Interfaces - CODEC Digital Audio Interfaces - Amplifiers - · Clocks and clock providers Presenting the hardware involved in the audio playback or capture. #### Lecture - Linux kernel ASoC subsystem - ASoC: the ALSA System-on-Chip subsystem in the Linux kernel - Describing audio cards with Device Tree: audio-graph-card, simple-audio-card - Linux kernel drivers for audio cards - · Linux kernel drivers for audio codecs - Controls - · Linux kernel drivers for CPU audio interfaces Introducing the Linux kernel subsystem for audio on embedded systems. ## Day 1 - Afternoon #### **Lecture - Linux kernel helpers** - regmap, regcache - · DMA handling *Presenting the common helper APIs.* #### **Lecture - More audio components** - Auxiliary devices, amplifiers, muxing - Jack detection - Asynchronous Sample Rate Converter *Presenting more components of the sound cards.* #### **Lecture - Routing** - · Routing audio - DAPM: Dynamic Audio Power Management Presenting the audio routes and power management. ## Day 2 - Morning ### Lecture - Userspace, hardware configuration - · ALSA plugins - · asound.conf - Sound card configuration Configuring the userspace audio paths and effects. #### **Demo - Card configuration examples** - · Reordering channels - · Splitting channels - Resampling - Mixing - LADSPA *Exercising the ALSA plugins.* #### Lecture - Userspace, controls configuration - amixer - alsamixer - Userspace API - Saving state: alsactl, asound.state Configuring the userspace audio paths and effects. #### **Demo - Configuring controls** - alsamixer demonstration - asound.state examples - Custom application Configuring the sound card controls. #### Lecture - Userspace, playing and capturing audio Userspace ALSA API Playing and capturing audio samples. ### Day 2 - Afternoon #### **Lecture - Troubleshooting** - Debugging - vizdapm Presenting how to debug common issues. #### **Demo - Debugging** Examples of common issues and their resolutions #### **Lecture - Pipewire** - Pipewire introduction - Pipewire configuration - Pipewire tools (pwdump, pw-cli, ...) - Pipewire session and policy management - · Pipewire modules and filtering - WirePlumber Using Pipewire as the sound server. #### **Demo - Pipewire** - Running pipewire on the target - Inspecting the configuration and setting properties - · Dynamic routing and patchbay - · Using modules and Filter-Chain Running Pipewire and exercising advanced configuration. # Lecture - The GStreamer multimedia framework - GStreamer - GStreamer pipelines - GStreamer plugins *Using Gstreamer for audio capture and playback.* #### **Demo - GStreamer** - Running gstreamer on the target - Creating multiple pipelines Running Gstreamer using different audio pipelines.