Embedded Linux development with Buildroot training On-site training, 3 days Latest update: May 08, 2024 | Title | Embedded Linux development with Buildroot training | |---------------------|---| | Training objectives | Be able to understand the role and principle of an embedded Linux build system, and compare Buildroot to other tools offering similar functionality. Be able to create a simple embedded Linux system with Buildroot: create a configuration, run the build, install the result on an embedded platform. Be able to adjust the Buildroot configuration to build an embedded Linux system tailored to specific needs: choice of the cross-compilation toolchain, management of the Linux kernel configuration, customization of the root filesystem contents, etc. Be able to create new packages in Buildroot to integrate additional applications and libraries into the embedded Linux system. Be able to use the tools offered by Buildroot to manage and analyze the build: security vulnerability tracking, license compliance, etc. Be able to develop and debug Linux user-space applications in the context of Buildroot. Be able to interact with the Buildroot open-source community, and to understand the internals of Buildroot. | | Duration | Three days - 24 hours (8 hours per day) | | Pedagogics | Lectures delivered by the trainer: 40% of the duration Practical labs done by participants: 60% of the duration Electronic copies of presentations, lab instructions and data files.
They are freely available at https://bootlin.com/doc/training/buildroot. | | Trainer | One of the engineers listed on: https://bootlin.com/training/trainers/ | | Language | Oral lectures: English, French. Materials: English. | | Audience | Companies already using or interested in using Buildroot to build their embedded Linux systems. | | Prerequisites | Knowledge and practice of UNIX or GNU/Linux commands: participants must be familiar with the Linux command line. Participants lacking experience on this topic should get trained by themselves, for example with our freely available on-line slides at bootlin.com/blog/command-line/. Minimal experience in embedded Linux development: participants should have a minimal understanding of the architecture of embedded Linux systems: role of the Linux kernel vs. user-space, development of Linux user-space applications in C. Following Bootlin's <i>Embedded Linux</i> course at bootlin.com/training/embedded-linux/ allows to fulfill this pre-requisite. Minimal English language level: B1, according to the <i>Common European Framework of References for Languages</i>, for our sessions in English. See bootlin.com/pub/training/cefr-grid.pdf for self-evaluation. | |--------------------|---| | Required equipment | Video projector One PC computer on each desk (for one or two persons) with at least 8 GB of RAM, and Ubuntu Linux 22.04 installed in a free partition of at least 30 GB Distributions other than Ubuntu Linux 22.04 are not supported, and using Linux in a virtual machine is not supported. Unfiltered and fast connection to Internet: at least 50 Mbit/s of download bandwidth, and no filtering of web sites or protocols. PC computers with valuable data must be backed up before being used in our sessions. | | Certificate | Only the participants who have attended all training sessions, and who have scored over 50% of correct answers at the final evaluation will receive a training certificate from Bootlin. | | Disabilities | Participants with disabilities who have special needs are invited to contact us at <i>training@bootlin.com</i> to discuss adaptations to the training course. | # Hardware platform for practical labs, option #1 ### BeagleBone Black board - An ARM AM335x (single Cortex-A8) processor from Texas Instruments - USB powered - 512 MB of RAM - 2 or 4 GB of on-board eMMC storage - USB host and device - HDMI output - 2 x 46 pins headers, to access UARTs, SPI buses, I2C buses and more. # Hardware platform for practical labs, option #2 # STMicroelectronics STM32MP157D Discovery Kit 1 board - STM32MP157D (dual Cortex-A7) processor from STMicroelectronics - · USB powered - 512 MB DDR3L RAM - Gigabit Ethernet port - 4 USB 2.0 host ports - 1 USB-C OTG port - 1 Micro SD slot - On-board ST-LINK/V2-1 debugger - Arduino compatible headers - Audio codec, buttons, LEDs # Day 1 - Morning # Lecture - Embedded Linux and build system introduction - The general architecture of an embedded Linux system - · Build systems vs. binary distributions - · Role of a build system - Comparison of existing build systems ### **Lecture - Introduction to Buildroot** - Key facts about the project - Getting Buildroot - Basic configuration of Buildroot - · Doing a first build ## Lab - Basic Buildroot usage - Getting and setting up Buildroot - Configuring and building a basic system with Buildroot for an embedded platform - Flash and test the generated system on the embedded platform ### Lecture - Managing the build and configuration - · Out of tree build - · Using and creating defconfigs - Defconfig fragments - · Other building tips # Day 1 - Afternoon #### **Lecture - Buildroot source and build trees** - Details about the Buildroot source code organization - · Details about the Buildroot build tree #### **Lecture - Toolchains in Buildroot** - The different choices for using toolchains in Buildroot - Overview of the toolchain options - Using existing binary toolchains, such as Bootlin toolchains, understanding *multilib* capabilities and integration of toolchains in Buildroot - Generating custom toolchains with *Crosstool-NG*, and re-use them as external toolchains # Lecture - Managing the Linux kernel configuration Loading, changing and saving the kernel configuration # Lecture - Root filesystem construction in Buildroot - Understand how Buildroot builds the root filesystem: *skeleton*, installation of packages, overlays, *post-build* and *post-image* scripts. - Customization of the root filesystem contents - System configuration: console selection, various /dev management methods, the different init implementations, etc. - Understand how Buildroot generates filesystem images ## **Lab - Root filesystem customization** - Explore the build output - Customize the root filesystem using a rootfs overlay - Customize the kernel with patches and additional configuration options - Add more packages - Use defconfig files and out of tree build # Day 2 - Morning #### Lecture - Download infrastructure in Buildroot - Downloading logic - Primary site and backup site, doing offline builds - · VCS download, integrity checking - Download-related make targets #### Lecture - GNU Make 101 - Basics of make rules - Defining and referencing variables - Conditions, functions - Writing recipes ## Lecture - Integrating new packages in Buildroot - How to integrate new packages in the Buildroot configuration system - Understand the different package infrastructures: for *generic*, *autotools*, *CMake*, *Python* packages and more. - Writing a package Config.in file: how to express dependencies on other packages, on toolchain options, etc. - Details on writing a package recipe: describing the package source code location, download method, configuration, build and installation steps, handling dependencies, etc. ### **Lab - New packages in Buildroot** - Create a new package for *nInvaders* - Understand how to add dependencies - Add patches to *nInvaders* for *Nunchuk* support # Day 2 - Afternoon ### **Lecture - Advanced package aspects** - Licensing report - Patching support: patch ordering and format, global patch directory, etc. - User, permission, device tables - Init scripts and systemd unit files - Config scripts - Understanding hooks - Overriding commands - · Legacy handling - · Virtual packages ### **Lab** - **Advanced** packages - Package an application with a mandatory dependency and an optional dependency - Package a library, hosted on GitHub - Use *hooks* to tweak packages - Add a patch to a package # Day 3 - Morning # Lecture - Analyzing the build: licensing, dependencies, build time - Usage of the legal information infrastructure - Graphing dependencies of packages - Collecting and graphing build time information ## **Lecture - Advanced topics** - BR2_EXTERNAL to store customizations outside of the Buildroot sources - Package-specific targets - Understanding rebuilds - · Tips for building faster ### Lab - Advanced aspects - Use build time graphing capabilities - · Use dependency graphing capabilities - Use licensing report generation, and add licensing information to your own packages - Use BR2_EXTERNAL # Day 3 - Afternoon ## Lecture - Application development with Buildroot - Using Buildroot during application development - Usage of the Buildroot environment to build applications outside of Buildroot - Generate an SDK for other developers - Remote debugging with Buildroot ### Lab - Application development with Buildroot - Build and run your own application - · Remote debug your application - Use <pkg>_OVERRIDE_SRCDIR ## **Lecture - Understanding Buildroot internals** - Detailed description of the Buildroot build process: toolchain, packages, root filesystem construction, stamp files, etc. - Understanding virtual packages. # **Lecture - Getting support and contributing** - Getting support: Bugzilla, mailing list, IRC - Contributing: understanding the development process, how to submit patches